Stay Connected

The easy way to lose weight
Meal Frequency and Skipping Breakfast Are Associated with Chronic Kidney Disease

Meal Frequency and Skipping Breakfast Are Associated with Chronic Kidney Disease

  • September 22, 2020
  • by

For original article click here

1. Eknoyan G., Lameire N., Eckardt K., Kasiske B., Wheeler D., Levin A., Stevens P., Bilous R., Lamb E., Coresh J. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3:5–14. [Google Scholar]

2. Webster A.C., Nagler E.V., Morton R.L., Masson P. Chronic Kidney Disease. Lancet. 2017;389:1238–1252. doi: 10.1016/S0140-6736(16)32064-5. [PubMed] [CrossRef] [Google Scholar]

3. Jha V., Garcia-Garcia G., Iseki K., Li Z., Naicker S., Plattner B., Saran R., Wang A.Y., Yang C.W. Chronic kidney disease: Global dimension and perspectives. Lancet. 2013;382:260–272. doi: 10.1016/S0140-6736(13)60687-X. [PubMed] [CrossRef] [Google Scholar]

4. Hill N.R., Fatoba S.T., Oke J.L., Hirst J.A., O’Callaghan C.A., Lasserson D.S., Hobbs F.D. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE. 2016;11:e0158765. doi: 10.1371/journal.pone.0158765. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Eckardt K.U., Coresh J., Devuyst O., Johnson R.J., Kottgen A., Levey A.S., Levin A. Evolving importance of kidney disease: From subspecialty to global health burden. Lancet. 2013;382:158–169. doi: 10.1016/S0140-6736(13)60439-0. [PubMed] [CrossRef] [Google Scholar]

6. Kim S., Lim C.S., Han D.C., Kim G.S., Chin H.J., Kim S.J., Cho W.Y., Kim Y.H., Kim Y.S. The prevalence of chronic kidney disease (CKD) and the associated factors to CKD in urban Korea: A population-based cross-sectional epidemiologic study. J. Korean Med. Sci. 2009;24:S11–S21. doi: 10.3346/jkms.2009.24.S1.S11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Ji E., Kim Y.S. Prevalence of chronic kidney disease defined by using CKD-EPI equation and albumin-to-creatinine ratio in the Korean adult population. Korean J. Intern. Med. 2016;31:1120–1130. doi: 10.3904/kjim.2015.193. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Shin S.Y., Kwon M.J., Park H., Woo H.Y. Comparison of chronic kidney disease prevalence examined by the chronic kidney disease epidemiology collaboration equation with that by the modification of diet in renal disease equation in Korean adult population. J. Clin. Lab Anal. 2014;28:320–327. doi: 10.1002/jcla.21688. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Park J.I., Baek H., Jung H.H. Prevalence of Chronic Kidney Disease in Korea: The Korean National Health and Nutritional Examination Survey 2011–2013. J. Korean Med. Sci. 2016;31:915–923. doi: 10.3346/jkms.2016.31.6.915. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Wang V., Vilme H., Maciejewski M.L., Boulware L.E. The Economic Burden of Chronic Kidney Disease and End-Stage Renal Disease. Semin. Nephrol. 2016;36:319–330. doi: 10.1016/j.semnephrol.2016.05.008. [PubMed] [CrossRef] [Google Scholar]

11. Kim S.H., Jo M.W., Go D.S., Ryu D.R., Park J. Economic burden of chronic kidney disease in Korea using national sample cohort. J. Nephrol. 2017;30:787–793. doi: 10.1007/s40620-017-0380-3. [PubMed] [CrossRef] [Google Scholar]

12. Feehally J., Khosravi M. Effects of acute and chronic hypohydration on kidney health and function. Nutr. Rev. 2015;73(Suppl. 2):110–119. doi: 10.1093/nutrit/nuv046. [PubMed] [CrossRef] [Google Scholar]

13. Clark W.F., Sontrop J.M., Huang S.H., Moist L., Bouby N., Bankir L. Hydration and Chronic Kidney Disease Progression: A Critical Review of the Evidence. Am. J. Nephrol. 2016;43:281–292. doi: 10.1159/000445959. [PubMed] [CrossRef] [Google Scholar]

14. St-Onge M.P., Ard J., Baskin M.L., Chiuve S.E., Johnson H.M., Kris-Etherton P., Varady K., American Heart Association Obesity Committee of the Council on Lifestyle and Cardiometabolic Health. Council on Cardiovascular Disease in the Young. Council on Clinical Cardiology et al. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement from the American Heart Association. Circulation. 2017;135:e96–e121. doi: 10.1161/CIR.0000000000000476. [PubMed] [CrossRef] [Google Scholar]

15. Cahill L.E., Chiuve S.E., Mekary R.A., Jensen M.K., Flint A.J., Hu F.B., Rimm E.B. Prospective study of breakfast eating and incident coronary heart disease in a cohort of male US health professionals. Circulation. 2013;128:337–343. doi: 10.1161/CIRCULATIONAHA.113.001474. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Odegaard A.O., Jacobs D.R., Jr., Steffen L.M., Van Horn L., Ludwig D.S., Pereira M.A. Breakfast frequency and development of metabolic risk. Diabetes Care. 2013;36:3100–3106. doi: 10.2337/dc13-0316. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Smith K.J., Blizzard L., McNaughton S.A., Gall S.L., Dwyer T., Venn A.J. Daily eating frequency and cardiometabolic risk factors in young Australian adults: Cross-sectional analyses. Br. J. Nutr. 2012;108:1086–1094. doi: 10.1017/S0007114511006398. [PubMed] [CrossRef] [Google Scholar]

18. Ballon A., Neuenschwander M., Schlesinger S. Breakfast Skipping Is Associated with Increased Risk of Type 2 Diabetes among Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Nutr. 2019;149:106–113. doi: 10.1093/jn/nxy194. [PubMed] [CrossRef] [Google Scholar]

19. Uemura M., Yatsuya H., Hilawe E.H., Li Y., Wang C., Chiang C., Otsuka R., Toyoshima H., Tamakoshi K., Aoyama A. Breakfast Skipping is Positively Associated with Incidence of Type 2 Diabetes Mellitus: Evidence from the Aichi Workers’ Cohort Study. J. Epidemiol. 2015;25:351–358. doi: 10.2188/jea.JE20140109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Ha K., Song Y. Associations of Meal Timing and Frequency with Obesity and Metabolic Syndrome among Korean Adults. Nutrients. 2019;11:2437. doi: 10.3390/nu11102437. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Jung C.H., Lee J.S., Ahn H.J., Choi J.S., Noh M.Y., Lee J.J., Lee E.Y., Lim J.H., Lee Y.R., Yoon S.Y., et al. Association of meal frequency with metabolic syndrome in Korean adults: From the Korea National Health and Nutrition Examination Survey (KNHANES) Diabetol. Metab. Syndr. 2017;9:77. doi: 10.1186/s13098-017-0277-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Drummond S.E., Crombie N.E., Cursiter M.C., Kirk T.R. Evidence that eating frequency is inversely related to body weight status in male, but not female, non-obese adults reporting valid dietary intakes. Int. J. Obes. Relat. Metab. Disord. 1998;22:105–112. doi: 10.1038/sj.ijo.0800552. [PubMed] [CrossRef] [Google Scholar]

23. Headland M., Clifton P.M., Carter S., Keogh J.B. Weight-Loss Outcomes: A Systematic Review and Meta-Analysis of Intermittent Energy Restriction Trials Lasting a Minimum of 6 Months. Nutrients. 2016;8:354. doi: 10.3390/nu8060354. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Holmback I., Ericson U., Gullberg B., Wirfalt E. A high eating frequency is associated with an overall healthy lifestyle in middle-aged men and women and reduced likelihood of general and central obesity in men. Br. J. Nutr. 2010;104:1065–1073. doi: 10.1017/S0007114510001753. [PubMed] [CrossRef] [Google Scholar]

25. Horne B.D., Muhlestein J.B., Anderson J.L. Health effects of intermittent fasting: Hormesis or harm? A systematic review. Am. J. Clin. Nutr. 2015;102:464–470. doi: 10.3945/ajcn.115.109553. [PubMed] [CrossRef] [Google Scholar]

26. Trepanowski J.F., Kroeger C.M., Barnosky A., Klempel M.C., Bhutani S., Hoddy K.K., Gabel K., Freels S., Rigdon J., Rood J., et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Intern. Med. 2017;177:930–938. doi: 10.1001/jamainternmed.2017.0936. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Kent P.S., McCarthy M.P., Burrowes J.D., McCann L., Pavlinac J., Goeddeke-Merickel C.M., Wiesen K., Kruger S., Byham-Gray L., Pace R.C., et al. Academy of Nutrition and Dietetics and National Kidney Foundation: Revised 2014 Standards of Practice and Standards of Professional Performance for registered dietitian nutritionists (competent, proficient, and expert) in nephrology nutrition. J. Ren. Nutr. 2014;24:275–285.e45. doi: 10.1053/j.jrn.2014.05.008. [PubMed] [CrossRef] [Google Scholar]

28. Kelly J.T., Palmer S.C., Wai S.N., Ruospo M., Carrero J.J., Campbell K.L., Strippoli G.F. Healthy Dietary Patterns and Risk of Mortality and ESRD in CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2017;12:272–279. doi: 10.2215/CJN.06190616. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Bach K.E., Kelly J.T., Palmer S.C., Khalesi S., Strippoli G.F.M., Campbell K.L. Healthy Dietary Patterns and Incidence of CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2019;14:1441–1449. doi: 10.2215/CJN.00530119. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Ajjarapu A.S., Hinkle S.N., Li M., Francis E.C., Zhang C. Dietary Patterns and Renal Health Outcomes in the General Population: A Review Focusing on Prospective Studies. Nutrients. 2019;11:1877. doi: 10.3390/nu11081877. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Crews D.C. Food as medicine for CKD: Implications for disadvantaged populations. Clin. Nephrol. 2019 doi: 10.5414/CNP92S106. [PubMed] [CrossRef] [Google Scholar]

32. Dunkler D., Dehghan M., Teo K.K., Heinze G., Gao P., Kohl M., Clase C.M., Mann J.F., Yusuf S., Oberbauer R., et al. Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Intern. Med. 2013;173:1682–1692. doi: 10.1001/jamainternmed.2013.9051. [PubMed] [CrossRef] [Google Scholar]

33. Michishita R., Matsuda T., Kawakami S., Kiyonaga A., Tanaka H., Morito N., Higaki Y. The Association Between Unhealthy Lifestyle Behaviors and the Prevalence of Chronic Kidney Disease (CKD) in Middle-Aged and Older Men. J. Epidemiol. 2016;26:378–385. doi: 10.2188/jea.JE20150202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Wakasugi M., Kazama J.J., Yamamoto S., Kawamura K., Narita I. A combination of healthy lifestyle factors is associated with a decreased incidence of chronic kidney disease: A population-based cohort study. Hypertens Res. 2013;36:328–333. doi: 10.1038/hr.2012.186. [PubMed] [CrossRef] [Google Scholar]

35. Bragazzi N.L. Ramadan fasting and chronic kidney disease: A systematic review. J. Res. Med. Sci. 2014;19:665–676. [PMC free article] [PubMed] [Google Scholar]

36. Hassan S., Hassan F., Abbas N., Hassan K., Khatib N., Edgim R., Fadol R., Khazim K. Does Ramadan Fasting Affect Hydration Status and Kidney Function in CKD Patients? Ann. Nutr. Metab. 2018;72:241–247. doi: 10.1159/000486799. [PubMed] [CrossRef] [Google Scholar]

37. Rouhani M.H., Azadbakht L. Is Ramadan fasting related to health outcomes? A review on the related evidence. J. Res. Med. Sci. 2014;19:987–992. [PMC free article] [PubMed] [Google Scholar]

38. Korea Centers for Disease Control & Prevention Korea National Health & Nutrition Examination Survey. [(accessed on 26 January 2020)]; Available online: https://knhanes.cdc.go.kr/knhanes/eng/index.do.

39. Kweon S., Kim Y., Jang M.J., Kim Y., Kim K., Choi S., Chun C., Khang Y.H., Oh K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES) Int. J. Epidemiol. 2014;43:69–77. doi: 10.1093/ije/dyt228. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Ministry of Health and Welfare of Korea. Korea Centers for Disease Control and Prevention 2013 Korea Health Statistics. [(accessed on 21 January 2020)]; Available online: http://knhanes.cdc.go.kr/knhanes/sub04/sub04_03.do?classType=7.

41. Ministry of Health and Welfare of Korea. Korea Centers for Disease Control and Prevention 2014 Korea Health Statistics. [(accessed on 21 January 2020)]; Available online: http://knhanes.cdc.go.kr/knhanes/sub04/sub04_03.do?classType=7.

42. Statistics Korea Korean Statistical Information Service. [(accessed on 26 January 2020)]; Available online: https://kosis.kr/eng/

43. Lee H.J., Jang J., Lee S.A., Choi D.W., Park E.C. Association between Breakfast Frequency and Atherosclerotic Cardiovascular Disease Risk: A Cross-Sectional Study of KNHANES Data, 2014–2016. Int. J. Environ. Res. Public Health. 2019;16:1853. doi: 10.3390/ijerph16101853. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Levey A.S., Stevens L.A., Schmid C.H., Zhang Y.L., Castro A.F., 3rd, Feldman H.I., Kusek J.W., Eggers P., Van Lente F., Greene T., et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Rabin R., Gudex C., Selai C., Herdman M. From translation to version management: A history and review of methods for the cultural adaptation of the EuroQol five-dimensional questionnaire. Value Health. 2014;17:70–76. doi: 10.1016/j.jval.2013.10.006. [PubMed] [CrossRef] [Google Scholar]

46. Craig C.L., Marshall A.L., Sjostrom M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB. [PubMed] [CrossRef] [Google Scholar]

47. Korea Centers for Disease Control & Prevention Korea National Health & Nutrition Examination Survey, 2013 & 2014, Guidelines for Nutrition Survey. [(accessed on 26 January 2020)]; Available online: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_02_02.do?classType=4.

48. Kurella M., Lo J.C., Chertow G.M. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J. Am. Soc. Nephrol. 2005;16:2134–2140. doi: 10.1681/ASN.2005010106. [PubMed] [CrossRef] [Google Scholar]

49. Chen J., Muntner P., Hamm L.L., Jones D.W., Batuman V., Fonseca V., Whelton P.K., He J. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann. Intern. Med. 2004;140:167–174. doi: 10.7326/0003-4819-140-3-200402030-00007. [PubMed] [CrossRef] [Google Scholar]

50. Wolf G. After all those fat years: Renal consequences of obesity. Nephrol. Dial. Transplant. 2003;18:2471–2474. doi: 10.1093/ndt/gfg427. [PubMed] [CrossRef] [Google Scholar]

51. Kao Y.M., Chen J.D. Inverse association between body mass index and chronic kidney disease in older diabetic adults. Ann. Epidemiol. 2013;23:255–259. doi: 10.1016/j.annepidem.2013.03.005. [PubMed] [CrossRef] [Google Scholar]

52. Liu A.Y.L., Wang J., Nikam M., Lai B.C., Yeoh L.Y. Low, rather than High, Body Mass Index Is a Risk Factor for Acute Kidney Injury in Multiethnic Asian Patients: A Retrospective Observational Study. Int. J. Nephrol. 2018;2018:3284612. doi: 10.1155/2018/3284612. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Dittmann K., Hannemann A., Wallaschofski H., Rettig R., Stracke S., Volzke H., Nauck M., Friedrich N. U-shaped association between central body fat and the urinary albumin-to-creatinine ratio and microalbuminuria. BMC Nephrol. 2013;14:87. doi: 10.1186/1471-2369-14-87. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Speakman J.R. Sex- and age-related mortality profiles during famine: Testing the ’body fat’ hypothesis. J. Biosoc. Sci. 2013;45:823–840. doi: 10.1017/S0021932012000818. [PubMed] [CrossRef] [Google Scholar]

55. Valencak T.G., Osterrieder A., Schulz T.J. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism. Redox Biol. 2017;12:806–813. doi: 10.1016/j.redox.2017.04.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Shi H., Clegg D.J. Sex differences in the regulation of body weight. Physiol. Behav. 2009;97:199–204. doi: 10.1016/j.physbeh.2009.02.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Valle A., Catala-Niell A., Colom B., Garcia-Palmer F.J., Oliver J., Roca P. Sex-related differences in energy balance in response to caloric restriction. Am. J. Physiol. Endocrinol. Metab. 2005;289:E15–E22. doi: 10.1152/ajpendo.00553.2004. [PubMed] [CrossRef] [Google Scholar]

58. Wang S.Y., Cai G.Y., Chen X.M. Energy restriction in renal protection. Br. J. Nutr. 2018;120:1149–1158. doi: 10.1017/S0007114518002684. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Hilliard L.M., Colafella K.M., Bulmer L.L., Puelles V.G., Singh R.R., Ow C.P., Gaspari T., Drummond G.R., Evans R.G., Vinh A., et al. Chronic recurrent dehydration associated with periodic water intake exacerbates hypertension and promotes renal damage in male spontaneously hypertensive rats. Sci. Rep. 2016;6:33855. doi: 10.1038/srep33855. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Garcia-Arroyo F.E., Tapia E., Blas-Marron M.G., Gonzaga G., Silverio O., Cristobal M., Osorio H., Arellano-Buendia A.S., Zazueta C., Aparicio-Trejo O.E., et al. Vasopressin Mediates the Renal Damage Induced by Limited Fructose Rehydration in Recurrently Dehydrated Rats. Int. J. Biol. Sci. 2017;13:961–975. doi: 10.7150/ijbs.20074. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

For original article click here

Leave a reply

Your email address will not be published. Required fields are marked *

Stay Connected

×